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Abstract 

In endogenous growth theory technological progress is generated by accumulation of knowledge. 
This causes a number of problems, most importantly the scale dependence of technological 
progress. This paper develops a growth model where technological progress is based on sampling 
and selection from a Pareto distribution of technological possibilities. If sampling is purely 
random, slow growth is possible provided population increases, explaining the pre-industrial 
growth experience. If accumulation of experimental sampling mass is enough to boost the chance 
of success in further sampling, the explosive regime of endogenous growth is reproduced, 
explaining the double digit growth of transitional countries. The moderate growth of advanced 
economies is reproduced if basic research, modeled as a process of sampling and selection from a 
Pareto hypothesis distribution, is needed to improve the chance of experimental success. The rate 
of technological progress then mainly depends on a balance between the power of the technology 
function, which indicates how hard further innovation is, and the rate of learning to develop and 
test new hypotheses in basic research. A high rate of population growth somewhat increases the 
rate of technological progress, but there also is growth with a stable population. Directing basic 
research towards economic opportunities is detrimental to growth and may reduce the growth rate 
by as much as one half. The steady state is shown to be globally stable; in the steady state, the 
growth rate is independent of the research intensity, but the level of income depends on it. Given 
current OECD levels of R&D spending and saving, a one dollar increase of applied R&D 
spending will increase national income with 6-25 dollars and one dollar extra basic research by 
20-100 dollars. These rates of return are ten and thirty times higher, respectively, than those on 
physical capital investment.  
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1. Introduction 

Current levels of prosperity in the advanced countries are without historical precedent. It is 

uncontroversial that this is due to technological progress based on scientific discoveries. Yet the 

mainstream neoclassical theory of economic growth is almost silent on the role of basic research 

in economic growth. This theory is based on the premise that technological progress is generated 

by the accumulation of a stock of technological knowledge or ‘ideas’; apart from a few very 

recent papers, the literature does not differentiate the stock of knowledge into basic knowledge, 

applied knowledge or practical knowledge. This lack of resolution of the theory is a major 

problem in science and technology policy: there is no theory to guide the allocation of budgets to 

these three purposes. As a consequence, budgetary policies with respect to this field as well as 

priority setting within them are matters of taste and fashion rather than of rational decision 

making. In the present section we first briefly review the existing growth literature, then 

introduce our alternative and finally summarize our findings.  

 

The canonical endogenous growth literature 

That technological progress, not capital investment, is the ultimate driver of growth was 

established more than half a century ago by Solow (1956). This means that to understand 

economic growth one needs to understand technological progress. The current standard theory of 

technological progress is endogenous growth theory, also known as AK theory, (neo-) 

Schumpeterian theory and evolutionary growth theory. This theory has roots that go back to the 

1970’s (cf. Paul Romer, 1994), found a canonical form in the 1990’s with the work of Romer 

(1990), Grossman and Helpman  (1991), Aghion and Howitt  (1992, 1998), Charles Jones (1995a, 

b), Kortum (1997), Dinopoulos and Thomson (1998), Peretto (1998) and Young (1998), 

Segerstom (1998). At the end of the decade it was reviewed concisely and incisively by Charles 

Jones (1999) and won its proper place in macro-economic textbooks (David Romer, 2001).  

The basic approach is to assume that there exists a stock of knowledge or ideas that 

determines the level of technology and that this stock of knowledge can be increased by 

knowledge production in which the stock of knowledge itself plays a central role. There are many 

variations on the theory, but its core results are quite simple. Let the production function be 

 where Y is national production of goods and services, K physical capital, L labor 

and A the stock of knowledge. The notation A goes back all the way to Solow’s (1956) seminal 
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paper, although he interpreted A not as the stock of knowledge but simply as a scalar that 

determines the level of factor productivity. Capital accumulates neo-classically, with fixed rate of 

saving; the stock of knowledge grows according to . Here a dot indicates a derivative 

with respect to time  is the labor force engaged in knowledge accumulation and  is a 

constant,  positive,  parameter. The long term growth of the economy now sensitively depends on 

the value of  If and the knowledge producing labor force is constant, there is constant 

rate of technological progress and hence of long term economic growth; this rate depends on the 

size of the research labor force. This implies that the rate of growth depends on the expenditure 

on knowledge accumulation, which is intuitively appealing, but also that there is a scale effect: 

the growth rate depends on the size of the economy since expenditure on knowledge creation 

depends on it. Therefore a small economy has a lower rate of growth than a large one. Similarly, 

if the knowledge labor force grows exponentially, so does the rate of technological progress, 

causing per capita income to grow explosively. This explosive growth is lost if  is smaller than 

one. In this case, development of new knowledge becomes more difficult as the stock of 

knowledge grows or, in Jones’s (1995) terminology, ‘fishing out’ makes new ideas more difficult 

to develop. Then, if the knowledge labor force grows at the same exponential rate n as the total 

labor force, the rate of technological progress converges to  and, with f Cobb-Douglas, 

the rate of growth of per capita output tends to where   is the factor share of capital. 

This means that the scale dependence has not vanished: per capita income grows only if there is 

positive population growth and on the steady growth path the levels of knowledge and income 

depend on the size of the population. If in contrast, we once more obtain explosive 

growth, even if there is no population growth. In this case new knowledge becomes easier to 

develop if the existing stock of knowledge is larger, the ‘standing on shoulders’ effect (Jones, 

1995). 

Following Jones (1995, 1999), the endogenous growth literature identifies the dependence 

on scale as an undesirable feature, though there are some exceptions (e.g. …). Dependence of the 

rate of technological progress on the rate of population growth or even the absolute size of the 

economy is hard to reconcile with the historical experience in the advanced countries in the past 

two centuries: a moderate rate of per capita growth, irrespective of the growth of the populations 

and the size of the economies. Explosive growth is not realistic in the long either. It is a good 

description of a transitional development phase (notably Japan until 1980, China, India and Brazil 
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today) but this would mean that  changes with the stage of development and thus would require 

a new model with an endogenous . Moreover, explosive growth in the transitional countries 

mostly occurred after populations were stabilized and were certainly no direct consequence of 

rapid population growth. To counter these objections a way has to be found to ‘rescale’ 

technological progress. In the canonical endogenous growth literature cited above, this is done by 

assuming that the scale effect on R&D and technological progress is offset by a factor that 

increases the difficulty of innovation if the economy is larger. In particular, it is assumed that 

there is an increase in product diversity. If product diversity increases at exactly the same rate as 

the population and if for every product knowledge accumulation grows according to the equation 

with , the explosive pressure of labor force growth or, in an alternative specification of the 

model, of technology driven income growth is precisely countered and the rate of technological 

progress once more can be constant, independent of n and dependent on the budget allocated to 

knowledge accumulation.  

The knowledge-accumulation-based models have a number of undesirable properties that 

hamper their effectiveness as underpinning of research and innovation policy. They depend 

sensitively on precise values of parameters that are hard to measure. Stable growth depends not 

merely on the precise value of  but also on the precise balancing of labor force growth by 

increasing product diversity. The ad hoc nature of this assumption diminishes the explanatory 

power of the theory; arguably, steady state growth is assumed rather than explained. 

Conceptually, the assumption that product diversity depends on size as measured by population is 

not easy to reconcile with actual product diversity in European countries or Australia compared 

to the much larger US. Even if the world as a whole is considered, the models paradoxically 

imply that explosive growth could easily be obtained by limiting product variety.  

 

Extensions of the literature 

An alternative mechanism to prevent explosive growth was developed recently by Ben Jones 

(2010). He assumes that the time required to master the stock of knowledge in a field increases 

with the maturity of the field (his terminology is an increasing ‘burden of knowledge’), implying 

that individuals need to invest more time to become productive in innovation. Individuals choose 

fields, taking account of the burden of knowledge in a field, to maximize their lifetime chance of 

success, leading to a balance with the effect of increased availability of innovation resources 
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induced by economic growth. A drawback of Jones’s model is that his steady state growth rate 

(of which the stability is not established) depends on the existence of population growth. Without 

it, his growth rate is zero. Thus there still is a scale effect. More important, however, is that 

Jones’s this line of reasoning is difficult to reconcile with the cases where very major recent 

innovations have been made by very young people (e.g. the PC, internet search engines, social 

media) and with the fact that a large part of international academic articles is authored by junior 

researchers (PhD students and post docs), particularly in the sciences. It should be recognized 

that mastering existing knowledge, even if it is recent, is several orders of magnitude easier than 

discovery of new knowledge; this means that it is hard to see how the need to possess existing 

knowledge could explain a slowdown of discovery. In fact, it would seem that any realistic theory 

of technological progress should explain why transmission and use of existing knowledge is so 

much easier than development of new knowledge. Jones’s empirical arguments (notably that the 

age at which Nobel winning work and breakthrough patents are achieved has increased in the 

course of last century may very well be due to another factor entirely. R&D probably requires 

more technological resources today than a century ago and it has become embedded in much 

larger organizations. Therefore, command over resources and over the research agenda has now, 

just as in non-R&D sectors, become more like a management position achieved not much before 

the age of forty, rather than a matter of talent and creativity. Thus breakthrough work is being 

done at a later age not because much more knowledge needs to be mastered but because research 

freedom and availability of the needed technological resources comes at a much higher age than 

before. 

Since the canonical literature has been established a growing number of papers has been 

published with extensions, using the original basic mechanism for technological progress. An 

early review of some new developments was given by Dinopoulos and Şener (2007) but since 

then more has appeared. The presence of product diversity in endogenous growth theory, 

modeled as an easy to analyze continuum, has spawned a large number of papers harnessing that 

feature to describe phenomena other than macro-economic growth. It would be well worth the 

effort to write a full scale review of the literature focusing on the use of this mechanism, but this 

would be far beyond the scope of the present paper. Instead we just mention some important 

threads, and give some of the many references by way of illustration, to give an inkling of the 

scope of this literature. One important knowledge-related thread in the literature is to consider 
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how patenting systems prevent spillovers from making innovation work at the product level; this 

is analyzed by postulating that each product is produced by a monopolist in need of protection of 

the fruits of his R and D expenditure. Other threads link R&D to the business cycle and financial 

markets (e.g. Dosi et al.,  2010, 2012), consider the funding role of government, and extent the 

model to open economies. From the point of view of science and research policy the most 

important extensions are recent attempts to differentiate between basic and applied R&D: Cozzi 

and Galli (2009), Gersbach et al. (2008, 2009, 2010). Most elaborate is Gersbach et al. (2009). 

Their model is a variation of the original constant labor force endogenous growth model. The 

extension is that the production of knowledge is refined. A is a function of the available number 

of intermediate goods. To increase the latter requires first of all basic research results and on top 

of that applied research to turn them into actual intermediate products. Naturally, in this model 

growth ceases without basic research. But, though that case is not developed, growth should also 

become explosive if basic research and labor force growth are combined. The scale problem 

remains.  

Empirically, much work has been done (summarized by Donselaer, 2011), but the results 

are not uniform. Basically, differences in the rate of technological progress measured as the 

residual of the output growth less the sum of the growth contributions of non-knowledge 

production factors (Solow’s 1957 approach), cannot strongly support a particular one of the 

endogenous growth models. The evidence clarifies that R&D, population growth, human capital 

and interactions between countries have been are important factors in the advanced countries, but 

that the total (applied plus basic) research intensity does not play the dominant role predicted by 

endogenous growth theory (Madsen et al., 2010). In contrast, in case of the Asian transitional 

double digit growth countries, there is good evidence (Madsen, 2010; Ang and Madsen, 2011) 

that the research intensity is as important as endogenous growth theory indicates and is related 

directly to the growth rate. 

 

Our approach: R&D is not knowledge accumulation but sampling and selection 

The conceptual basis of the existing models is shaky in several respects. Whereas it is not 

impossible to measure the national stock of physical capital, it is hard to see how a similar 

measurement could be made of the national or global stock of knowledge (Steedman, 2003). New 

knowledge may replace existing knowledge, encompass it, enhance it, cause it to be forgotten, 
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build on it, and so on. Therefore there is no simple relation between the stock of knowledge and 

R&D. The latter is not simply the increment, gross or net, of the stock of knowledge. Similarly, 

Griliches (2000) in the book that summed-up his life’s work in the field, noted that R&D ‘capital’ 

does not simply depreciate as a consequence of the mere passage of time or of mechanical wear 

and tear, but can become obsolete simply because of new work. It is no coincidence that Jones 

(1995, 1999) did not even use the word stock of knowledge but preferred ‘stock of ideas’. The 

problem to define a stock of knowledge is exacerbated if one wishes, as makers of science and 

innovation policy must in their funding decisions, to distinguish between various types of 

knowledge or ideas. How does one add up the knowledge created in basic discoveries and 

knowledge created to achieve a specific application?  

This conceptual problem reflects the fact that the concepts of accumulation and saving 

that have been developed to describe capital formation are less relevant in the field of science and 

technology; mutatis mutandis the same is true of the concepts of product diversity and 

intermediate goods that have become an important tool in the literature. In both cases, models and 

terminology that are natural in the fields for which they were originally designed, are unnatural 

straightjackets in the analysis of R&D. This includes words like accumulation, competition, 

production, intermediate products, optimization; an outstanding example of the mismatch 

between the field and the analytical apparatus is the use of the term ‘spillover effects’ in case of 

basic research: it suggests that having their work picked up by others is mainly a nuisance to 

basic research workers! Much more relevant and natural in the field of R&D are concepts such as 

discovery, trial and error, serendipity, transmission, speed of learning, laws of nature, theories of 

everything, fractionalization of knowledge fields, and so on.  Therefore we introduce a theory 

that starts out from these concepts and use them to obtain an alternative neoclassical model of the 

generation of technological progress and economic growth.  

 

To achieve this we do away with the assumption that technological progress is produced 

or even created through accumulative processes. Instead we recognize that it is the result of the 

discovery of technological possibilities, possibilities that exist irrespective of whether human 

beings discover them or not.  We emphasize that discovery is the result of a trial and error 

process where samples are drawn from all technological possibilities and the best results are 

retained. Knowledge then is either of two things. First, a record of the results of previous 
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experiments; second, information on how to select a sample in such a way that the chance of 

success is increased. Consequently, two things are central in our approach: the inherent 

distribution of the technological possibilities and the sample selection process. With respect to 

distribution of the technological possibilities, it is clear that there are many different technologies 

that can generate a low level of productivity, but far less that result in a high productivity. A 

natural way to formalize this idea is to postulate the existence of technology density function that 

indicates what the relative number of technologies is that can generate a given level of 

productivity. We assume that his function has the shape of an inverse power law aka Pareto 

distribution. For growth analysis this distribution is particularly attractive because its shape is the 

same everywhere. The power of the technology function indicates how fast the density falls 

with increasing productivity and thus how fast innovation becomes more difficult. Given the 

technology function, technological progress can be described as sampling and selection regimes. 

Sampling corresponds with experimental development (applied R and D) of new technologies. 

The various basic models encountered in the endogenous growth literature for different values of 

 are now obtained as a consequence of differences between sampling and selection regimes, 

irrespective of parameter values. These regimes are introduced in sections 2 and 3 and their 

growth implications are analyzed in sections 4 - 7. We briefly summarize the core features and 

results for these regimes here.  

· The simplest possible case occurs when there is no permanent sampling process but the first 

working technology found is used and no information is exchanged between regional 

communities; presumably this was the situation in the gathering and hunting societies that 

preceded the first agricultural economies. In this case the level of technology is simply the 

expected mean of the technology distribution and we have the original zero technological 

progress Solow model.  

· If experiments are unconstrained by prior information, but a fixed part of income is spent on 

them and the experimental result with highest productivity is retained, there is a stable but 

slow growth path provided population growth is non-zero (cf. section 4); this is similar to the 

case in the endogenous growth literature and to Jones’s (2010) model. It can be 

identified with the growth process in pre-industrial agricultural societies, where some 

experimentation went on but no systematic development of the experimental process itself.  
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· In the next regime the information from the sampling process itself is sufficient to constrain 

the sampling process to exclude technologies with a productivity below the level where a 

critical experimental (sample) density has been achieved. This regime leads to the explosive 

growth corresponding to (cf. section 5), even if population does not grow. This 

corresponds to the double digit growth process of transitional countries and explains the 

results of Madsen and others cited above on the relation between the research intensity and 

growth in Asian transitional economies.  

· The final regime introduces basic research. After the onset of the industrial revolution, the 

accumulation of experimental mass is no longer enough in the advanced countries to 

constrain further experiments to potentially successful ones: it is necessary to discover the 

underlying laws of nature that constrain the technological possibilities. Unlike the 

endogenous growth literature implies, science’s role is not to open up technological 

possibilities, but to guide technological R&D away from unsuccessful avenues and thus to 

increase its effectiveness. The classic example is that no amount of unsuccessful 

experimentation could deter the alchemists from trying to make gold; the discovery of the 

basic laws of chemistry within the periodical system was needed to do that. That this is no 

mean feat is illustrated by the fact that Isaac Newton devoted more years to alchemistic 

experiments of which we now know they were pointless, than to his scientific discoveries on 

light and gravity that helped shape our world.  

Basic research amounts to developing and testing of hypotheses until one is found that 

provides a sufficient explanation of the data, in this case the experimental results leading to a 

given level of productivity.  We describe this process with a concept similar to the technology 

density function (cf. section 3): the hypothesis density function. Defining a research field as 

the development and testing of hypotheses to explain a given level of productivity (implying 

that there is an ever expanding continuum of research fields), a critical density of tested 

hypotheses has to be achieved. The speed with which this happens depends on the number of 

workers in the field and the fall of the time needed per hypothesis in that field due to learning. 

This leads to a stable steady state rate of growth of which the value depends on the balance 

between the speed of learning in new basic research fields and the increasing difficulty of 

innovation expressed in the power of the technology function (the steady state growth rate is 

given in section 6, its stability is shown in section 7). The growth rate also depends on the 
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rate of growth of the labor force, but does not vanish if the latter is zero. This case is a bit like 

the case in the endogenous growth literature where  and product differentiation 

balances the tendency to explosive growth, but unlike the literature it also generates steady 

state growth without population growth.  

The regime with basic research permits an analysis of some important policy issues. One is 

whether or not to target basic research. It has become fashionable in many countries to implement 

measures to direct basic research at specific business sectors or application fields that are deemed 

to be particularly promising economically. This amounts to a portioning of the basic research 

labor force according to fields. The alternative approach is to leave basic research free, implying 

that there is a kind of joint production process in all fields. It turns out that for a plausible range 

of parameter values targeted basic research leads to a much lower steady state growth rate than 

free basic research; a ballpark figure is that growth rate is halved by targeting (Cf. section 6).  

Another analysis that can be done is the effect of research spending on the level of 

income, or, more appropriately, on national consumption (Cf. section 8). The effect of course 

depends on both the (unknown) parameter values and on the values of the rates of spending on 

applied R and D and basic research themselves. Surprisingly, if these rates are small, the effect is 

completely dominated by the rates and virtually parameter free. For realistic cases, applied R and 

D will have a return of something like ten times that of spending on physical capital and basic 

research will have return that is 3 to 4 times as high as that on applied R and D. At current rates 

of spending of basic research of half a percent of GDP or less, one additional Dollar or Euro 

spent on basic research will raise national consumption by 50 to 100 dollars or Euros.  

Finally, the importance of basic research and its processes have science policy 

consequences. The dependence of the long term growth rate on the speed of learning in basic 

research implies that enhancing this rate of learning is important for economic growth.  This 

could be achieved by measures to speed up the dissemination of research results, such as 

immediate open access and electronic accessibility of all publications (for an estimate of the 

effects of free access cf. Houghton and Sheehan, 2009); full accessibility of data; complete 

publication of negative results; systematic reviews that are easy to understand for non-specialists, 

including outreach activities explaining results to a more general public; frequent contact 

between researchers in different countries, institutes and fields; reduction of administrative 

burdens; loss of research experience by people dropping out of the research system because of 
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lack of career opportunities, and so on. None of these measures are new, many of them have been 

and are advocated by learned societies, but our analysis implies that they should be regarded as 

not just nice to do, but as central to effective national and international innovation policies, 

perhaps instead of part of the subsidies and tax breaks that many countries now spend their 

innovation budgets on. 

The briefest possible summary of our results is that President Obama was right when in 

his 2012 State of the Union Address he declared, somewhat at odds with much of established 

theory and with current policies in most of the rest of the world, ‘Innovation also demands basic 

research.’ By our results, basic research is the dominant engine of prosperity in advanced nations. 

 

2. The technology function and the sources of technological progress 

In this section we introduce the concept of a technology function as a representation of the 

technological possibilities underlying past, present and future actual technologies. Furthermore 

we describe the processes of trial and error by which the actual technologies are selected from the 

technology distribution. 

 

Technology function 

Consider the standard aggregate production function where output or income  is the total factor 

productivity  multiplied by a linear homogenous function  of capital  and labor : 

(1)    

For any individual good or service, the total factor productivity may differ considerably between 

producers, localities, countries and dates. This can be due to both major and minor differences in 

technology and production processes. Very high and very low productivities may co-exist at the 

same date, and productivities may have been higher in some localities thousands of years ago 

than they are in other localities today (e.g. due to conditions of climate, soil, mineral and natural 

resources, presence of waterways, etc.). This variation implies that even at the micro level total 

factor productivities can be considered as a sample from a random distribution. Eo ipso, the 

aggregate total factor productivity can be considered as the average of a large number of samples 

from an underlying distribution. Houthakker (1953) already proved that a macro Cobb-Douglas 

function results from Pareto-distributed fixed coefficients technology at the individual level. We 

take this one step further and assume that the aggregate total factor productivity  itself is the 
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average of a sample from an underlying distribution. This assumption implies that  depends on 

two things: the underlying distribution and the sampling process.  

The underlying distribution is formalized by a probability density function , where  

is a value of total factor productivity. In economic terms, this function may be viewed as measure 

of the number of different technologies capable of generating total factor productivity . In other 

words, the higher the value of , the easier it is to achieve a factor productivity value of . We 

will refer to this density function as the technology function and use the term technology point  

to indicate the technologies underlying a total factor productivity value . We make three general 

assumptions about its properties. The first is a positive minimum value  of total factor 

productivity; below the minimum the density is zero, ruling out negative output:  

for . The second assumption is that there is no maximum total factor productivity and 

therefore no absolute limits to technological progress and economic growth:  for

. In its absolute form this assumption requires that no ‘theory of everything’ exists or, 

alternatively, that such theory allows infinite technological possibilities. This is the ‘endless 

frontier’ assumption of Vannevar Bush (1945) on which US science and technology policy has 

been based ever since he phrased it. Of course it is impossible to verify this assumption. 

However, it is a simple summary and a straightforward extrapolation of the historical experience 

until today. Nevertheless we temper it with a third assumption, namely that the technology 

function decreases as a function of the value of total factor productivity:  for  . 

This implies that as higher and higher levels of factor productivity are achieved, further 

technological progress, though possible in principle, requires more and more effort. Our final 

assumption is that the mathematical expectation of  is finite. If not, even a completely 

random trial and error process would immediately lead to infinite total factor productivity, in 

evident contradiction to historical reality. 

These assumptions are satisfied by various distributions, including the upper half of the 

Normal distribution. We use the Pareto distribution. It is not only quite tractable but also 

embodies the power laws that usually pop-up in bibliometrics and scientometrics, most famously 

in Lotka’s (1926) law, which states that the number of papers per author is inversely related to 

the square of the number of authors, implying a Pareto distribution with a power of 2. The impact 

factors of articles and authors, the total number of publications of authors, as well as many other 

phenomena in knowledge fields have long tail distributions and appear to be ‘scale free’ in the 
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sense that they look the same everywhere; examples are given by e.g. Poiter (1981), Ivancheva 

(2001), Glänzel (2010), Li (2002). The Pareto distribution, perhaps generalized to account for 

another shape before the tail, is the natural form to describe this. The long tail phenomenon in its 

turn may be generated by underlying processes such as interactions in scale free networks ().  In 

our case only the tail is important and we can use the original Pareto form. Thus we have as 

probability density function (technology function) , and cumulative density function : 

(2)  ( ;   

Here  is the power of the distribution; the higher , the steeper the distribution decreases as a 

function of the total factor productivity .  The restriction  

assures existence of the mean.   

 

Pure trial and error 

We now turn to the sampling process that determines the actual total factor productivity. First, as 

a thought experiment, consider the purely static case. An example would be a large number of 

pre-agricultural societies with limited mutual communication, little opportunity to experiment 

with alternative means of production and almost no capacity for storing and transferring 

information about the results of experiments. Random differences would exist between the total 

factor productivities of societies but no systematic growth. On average the total factor 

productivity is simply the mean of the technology distribution: 

(3)     (Static case, pre-agricultural societies) 

As soon as there is some communication between societies and some permanent capacity to 

experiment because a small part of income is set aside for experimentation, the expected result is 

no longer the mean of the distribution but the expected maximum productivity within the total 

cumulative sample. A newly tried out technology replaces the current one as soon as soon as it 

yields a higher total factor productivity. This trial and error process will, for economies as a 

whole and over longer periods of time, lead to an increase of the total factor productivity. The 

process is a plausible source of progress in agricultural societies before the advent of systematic 

research and development in the seventeenth century. Formally, the cumulative use of a part 

income to trial and error amounts to a continuous process of sampling. This, in turn, yields a 

growing cumulative sample which we will refer to as the experimental mass. The actual factor 
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productivity can now be considered as the expected maximum of the cumulative sample. The 

maximum should be an increasing function of the experimental mass . That this is indeed the 

case is shown in the appendix. The expected maximum in a sample of discrete size m from a 

Pareto distribution is:  

(4a)  

For large sample values we can approximate the discrete sample size m by the continuous 

experimental mass  and obtain: 

(4b)     (Pure trial and error, pre-scientific agricultural societies) 

Hence in a pure trial and error process the total factor productivity has a constant 

elasticity with respect to the (cumulative) experimental mass, the elasticity being the inverse of 

the power of the technology function. Clearly, if the power is high and the function as a steep 

slope, increasing the experimental mass has only a small effect on productivity.  The assumption 

that  is continuous assumes that partial experiments are possible; since the technology function 

represents a national aggregate of many individual goods and services, each of which may have 

different technologies, this assumption is trivial. The economic growth of economies with pure 

trial and error technological progress is analyzed in section 3. 

 

Knowledge-based trial and error 

In a pure trial and error process the trials are a sample from the total distribution and there is no 

way to exclude the part of the distribution below the current total factor productivity from the 

sampling process. As a consequence, an ever larger part of the experimental technologies will 

turn out to have a lower productivity than current technology. In contrast, modern research and 

development does not try-out technologies at random, but makes use of accumulated knowledge 

and new research to obtain prior information to direct the experimental process towards the 

technologies that are most likely to lead to an increase in factor productivity. A natural way to 

stylize this is to stipulate that the sampling process eliminates a priori all technologies with 

productivities below a certain point, which we shall call the technology threshold. Then the 

expected total factor productivity is the conditional mean above the threshold. It is the ordinary 

conditional mean and not the expected sample maximum because in this case we want to 
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emphasize knowledge driven improvement, not uninformed trial and error. In the case of the 

Pareto distribution, if the threshold is  the conditional distribution and mean are: 

(5)     

Clearly (cf.4) the conditional distribution has precisely the same form as the original one, apart 

from being shifted to the right. This property of the Pareto technology distribution makes it ideal 

for the analysis of economic growth and the natural partner of the Cobb-Douglas production 

function.  

 

Relation between applied R and D and basic research. 

The specification of the impact of research and development on total factor productivity is now 

equivalent to specifying the mechanisms by which R and D affect the threshold  in equation (6). 

To derive a realistic specification of those mechanisms we need to consider the nature of various 

types of R and D in some detail. The most common distinction is that between basic research and 

applied R and D. In a nutshell, this is the distinction between discovering the laws of nature and 

harnessing them for practical purposes. The more elaborate standard definition is given in the 

OECD (2002, p.30) Frascati manual for R and D statistics. Basic research is defined as: 

‘experimental or theoretical work undertaken primarily to acquire new knowledge of the 

underlying foundation of phenomena and observable facts, without any particular application or 

use in view.’ Applied research is defined similarly, but in this case ‘directed primarily towards a 

specific practical aim or objective’, and experimental development is defined as ‘systematic work 

drawing on existing knowledge gained from research and/or experience which is directed to 

producing …’ These categories of knowledge production are linked and need each other. To 

illustrate this we briefly consider two examples. The first is the classic and extremely well 

documented case of electromagnetism. Faraday’s experimental work over several decades (ca 

1810 - 1850) established the observational basis of electromagnetism. Maxwell (1865) then 

turned this into his unified electromagnetic field theory which subsequently facilitated the 

technological developments in the last part of the nineteenth century of Edison, Bell, Marconi, 

and others. Thus there was a sequence experiments → theory → applied R and D. The start of 

this sequence, however, was based in technology: many of Faraday’s experiments were only 

possible because of newly available equipment and tools. Even so, he sometimes needed to do lot 

of development work in adjacent fields, e. g. in chemistry to develop the required materials. Even 
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so, one of his experiments turned out to be impossible until new technological developments 

allowed Zeeman to do it in 1897. 

The second example is drug development. Until fairly recently, drug development was 

based exclusively on applied R and D or even on trial and error: large numbers of substances 

were tried out as treatment of particular diseases in test tubes, in test animals and finally in 

clinical trials of increasing size and sophistication. This development was mostly done without 

basic knowledge of how healthy organisms function at the cellular and molecular level and not 

guided by knowledge of the mechanisms by which a disease disturbs the healthy organisms. In 

fact, in many cases of successful drugs, the knowledge of how and why they work was developed 

after they had proven to be successful, and then only partially. As a consequence, the selection of 

new substances to test could at best be based on hunches and analogies only. This has led to ever 

increasing cost of drug development, if only because without solid basic knowledge the only way 

to prevent lethal side-effects is intensive large scale testing. At present, no more than twenty new 

drugs are admitted for use every year, at a cost of 50 billion US$. Only in last decade and half has 

the technology of molecular biology developed so strongly that it is has become conceivable to 

obtain complete knowledge of how a disease works before designing a drug. This development is 

very much technology driven: sequencing techniques and other bio-chip technologies have made 

it possible to do lab tests that used to take years and were extremely expensive in a matter of days 

or even hours at negligible cost. These new techniques, based on advances in information 

technology and nanotechnology, are now causing such a deluge of data that the search for 

patterns and the development of models to understand the data is becoming a daunting task. Thus 

the technological advances are now gradually providing the basis for the advances in basic 

knowledge that might eventually lead to more rapid and cheaper drug development.  

These two examples demonstrate three points: 

· Applied R and D without sufficient basic knowledge will eventually become unproductive. 

· Basic research requires an adequate level of technology and experimentation.  

· These linkages are not simultaneous but sequential and require a lot of time.  

Each of these properties are essential in the context of growth model: the model needs to take 

account of the fact that basic research in a field cannot start until a certain level of technology has 

been reached and a sufficient amount of experimentation has been done; applied R and D cannot 
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be considered effective unless sufficient basic knowledge has been obtained; and the time lags 

need to be taken into account.  

 

Critical density of applied R and D 

It is almost trivial that the technology threshold  can only be increased after a sufficient amount 

of applied of R and D has been done at the corresponding the technology point. As before, we 

describe experimental work as the taking of random samples (experiments) from the underlying 

technology distribution; then we may formally define the experimental density  at a 

technology point  and time  as the number of experiments that led to precisely the value  of 

the total factor productivity. At any time, this density depends on the historical paths of both the 

experimental mass and the threshold. We again assume the experimental mass to be continuous 

and, moreover, sufficiently large for the difference between the expected density and the actual 

density to be negligible. Then at , the change in the experimental density due to a marginal 

increase in the experimental mass and the density itself are: 

 (6)         

The first condition for an increase of the threshold, a sufficient amount of experimentation, can 

now be formulated more precisely: a necessary condition for the threshold  to increase is that 

the (expected) experimental density at  is at least equal to a critical value . We will refer 

to this value as the critical density. We take  to be constant and independent of : differences in 

how difficult it is to develop new knowledge are already taken into account by the technology 

function. Define  as the ‘critical point’ at time : the factor productivity value at which the 

density is precisely critical. In the appendix we show that the time derivative (time derivatives are 

denoted with dots) of the critical point is (all variables refer to time : 

(7)  

As noted, the variable is the mass of experiments. The production of experiments depends not 

just on labor, but also on capital and other material resources. In fact, because of the experimental 

and inductive, data driven, nature of applied R and D it is reasonable to assume that the 

experimental mass is produced with the same production function as output of ordinary goods 

and services. Therefore we can simply write 

(8) , 
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Where Y is national income (or total output) and the fraction of income spend on applied R 

and D; since we will use a neoclassical production function, this formulation implies that 

substitution is allowed between capital and labor in applied R and D.  

 

3. Basic research 

Production of basic research 

The second condition for the technology threshold to increase beyond , is that a sufficient 

amount of basic research results pertaining to the technology point  has been obtained. To 

obtain an appropriate measure of a ‘sufficient amount’ and how it is produced, we need to 

consider a number of aspects of the process of basic research. The first aspect is that of research 

fields. Each technology point represents an amalgam of production technologies of many 

different goods and services. Usually, increases in productivity do not occur to the same degree in 

all goods and services, but are concentrated in a number of industries, goods and services. At 

another technology point other industries, goods and services attain higher productivity gains. 

Therefore, at each point of the technology function, the required basic research results are based 

on a new mix of research fields. In fact, a continuous process of branching or fractionalization is 

exactly what is found empirically in scientometrics, cf. Van Raan (2000). This combination of 

shifts in the relative speeds of technological progress in industries, fractionalization of science, 

and intricate two-way relations between basic research and applied R and D, implies that each 

technology point is associated with a unique mix of basic research fields, which we simply dub 

‘field ´. In view of the embedment of basic research in particular technology and experimental 

equipment, basic research in field can only start once critical experimental mass has been 

achieved at technology point   

The second aspect of basic research that needs consideration is the nature of this research. 

In textbooks, the exposition usually suggests an orderly progression of knowledge development 

where new contributions build on older work in a natural way, quite predictable by hindsight. 

Only very infrequently are there surprises, flashes of inspiration, caused by persons of extra-

ordinary genius. This view of science was made canonical by Kuhn who implied that apart from 

the occasional paradigmatic change, the overwhelming majority of scientific work is more or less 

routine, straightforward work. The unpredictable part of research, the paradigmatic changes, were 

made even more out of the ordinary by stipulating that only young scientists made these changes 
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and they are usually only accepted by the profession after the older generation has cleared the 

field.  

It is however a cliché that basic knowledge in the making is something quite different 

from textbook knowledge. Actual research is much messier. Many things fail, successful things 

come as a surprise. Rather than a combination of normal accumulative work and very infrequent 

upheavals, it is continuous alternation of routine progress and upheavals of all sizes, staying with 

an approach for some time and hitting on and making paradigmatic changes of all kinds of 

magnitude. It is an amalgam of inspiration, groping in the dark, tenacious hard work, learning, 

and serendipity. There is not a dichotomy of a very small number of very major discoveries and 

very large number of routine stuff, but a power law, or at least a distribution with a long tail, 

where the pattern of new directions and routine continuation is repeated at every level in the same 

way. This is true per field, for the distribution of discoveries over individuals, and even for the 

distribution of discoveries within the work of individuals.  

This process cannot be dealt with by a simple accumulation model. Instead, we again 

have to turn to a model of trial and error under uncertainty, with gradual learning. The units of 

this trial and error process are hypotheses about ‘the underlying nature of phenomena end 

observable facts.’ The process of basic research can be described as the development and 

elaboration of hypotheses, the analysis of their internal consistency, foundations, consequences 

and relation to other hypotheses, the testing of their compatibility with stylized knowledge of 

phenomena and detailed data, and their successfulness in prediction and in generating 

applications. This description can be summarized as ‘developing and testing hypotheses’. To 

make this description amenable to quantitative analysis, we have to define a unit of measurement 

of hypotheses. This is quite straightforward in the context of the technology function model: all 

potential hypotheses in field can be ordered according to the value of the total factor 

productivity they generate. Here ‘generate’ means that they allow for raising the technology 

threshold to .  Having established this definition, we can model the trial and error process in a 

way that is similar to what we already did in case of technology: define a distribution function, 

then a selection process and finally derive the expected value of The probability density 

function for basic research hypotheses in field or ‘basic knowledge function’, is . Of 

course, this function could be any shape. However, in view of the preponderance of power laws 

in scientometrics, it is again natural to use a Pareto function. In principle, both the power and the 
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minimum of this function could be field dependent. However, to avoid unnecessary extra 

parameters we assume a power that is the same for every field and, moreover, identical to the one 

of the technology function . We also assume that the minimum is the same in every field. This 

makes sense if the complexity of the development of new technology derives from the 

complexity of the basic knowledge needed to underpin the technology. We can now write the 

basic knowledge function for field : 

(9)     

To complete the description of the process of basic research, we need to specify how the selection 

of hypotheses works. There are two major differences with applied research: with respect to the 

factors of production and with respect to learning. In case of basic research the critical production 

factor is labor. Though instruments have to be built in observational and experimental basic 

research, the restrictive factor usually is labor. Consider the development of molecular biology. 

The rapid development of DNA-chip technology has greatly increased the research possibilities, 

but this technology does not replace researchers, it allows them to do things that were not 

possible before. The critical role of labor is even stronger in theoretical work: Einstein’s ten year 

hike from special to general relativity could not have been appreciably shortened by providing 

him with many more material resources (cf. Isacson, 2007). Consequently, a Harrod-Domar 

production function is natural for basic research; of course in this model material resources can 

also be the limiting factor, but in our case we can ignore this possibility since we already have 

assumed that critical experimental mass has to be achieved before basic research can start in a 

field.  

The second major difference is learning. Later work in a field is easier because new 

analytical tools have been developed, unsuccessful approaches identified and unfamiliar concepts 

internalized. Also, earlier work is an input for later work and makes this easier. This learning 

process is reinforced in cases where growth in the volume of basic research in a field creates a 

market for technological tools which, once available, boost productivity. At present, this process 

is particularly strong in biomedical research, but it is also evident in e.g. ICT, nano-science, 

software production. In terms of hypothesis selection, the essence of learning is that the 

experience with the development and testing of hypotheses helps in selecting further hypotheses 

that have a higher chance of being successful than those in the original distribution. Thus, just as 

in applied work, there is a threshold that is raised by the research process. In basic research, this 
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process is in one sense stronger than in case of applied research. Any researcher who succeeds in 

developing a successful hypothesis can immediately build on it in the selection of further work. 

However, in basic research there also is a restriction with respect to learning: it is an individual 

rather than collective process. Consider a thought experiment: suppose that not just Einstein 

would have worked on the general theory of relativity, but 1000 Einsteins who communicated 

only through the literature. Clearly, this would not have sped up the process of discovery much. 

Even if they would have cooperated quite closely, the gains would probably have been minor, 

because each of them would have had to try much the same approaches at the same time, each 

making comparable errors and exploring the same blind alleys before being convinced that they 

were errors and blind alleys. Isacson’s (2007) description of the situation in 1915, ten years after 

the special theory of relativity, is quite instructive. Einstein had lectured on his approach and this 

had caused the greatest mathematician of the time, Hilbert, to work on the problem. Though this 

competition spurred Einstein on, it did not help him intellectually in any way at all, the solution 

he found was his and his alone. Of course this example cannot be completely generalized to all 

theoretical work; nor is all basic work theoretical. Yet it seems safe to say that in basic research, 

learning processes are sped up only a little by increases in the total mass of work done in the field 

but mostly depend on the cumulative experience of the standard worker in the field. This is not to 

say that the number of workers has no influence on output: given the state of learning, the 

number of workers determines the sample mass that is achieved in a field and therefore research 

output as long as that is defined as the maximum of the sample hypotheses.  

We will now formalize these ideas in a model of basic research production. This consists 

of two parts: a learning equation and an output equation. To obtain the learning equation, let the 

average worker draw a series of successive samples from the hypothesis distribution and let the 

threshold in each sample be a function of expected results of the last sample. More precisely, let 

each successive sample require the same number of working hours  and let the total number of 

hours worked by a standard worker in field  since work started be . Suppose each sample 

draw causes an increase in the threshold that reduces the remaining mass of the distribution with 

a fraction . Then we obtain from (2) for the relation between successive thresholds: 

 If  is a multiple of , setting  and 

noting we obtain: 

(10)    
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Here . Consequently, the threshold grows exponentially as a function of the 

total time since research in field started. Thus the rate of growth is: 

· Inversely proportional with the power of the basic research function that is, with how 

difficult it is to obtain results in the field concerned 

· Inversely proportional with the time each sample draw requires;  can be interpreted as the 

time required for the production of units of basic research output that are communicable 

between researchers. Therefore, more frequent publication, better access to publications and 

improved communication technologies are all reflected in a lower value of  

· Proportional to the logarithm of the reduction of the mass of the basic research distribution 

by each draw.  

The latter merits some further elaboration. Newton famously said he only peered further because 

he stood on the shoulders of giants. Our little model of learning applies this Newtonian phrase by 

stipulating that each new period of basic research in a field stands on the shoulders of the results 

of earlier periods; the parameter indicates how much the shoulders grow in each period. Two 

examples satisfying the condition of a constant reduction rate of the remaining basic knowledge 

distribution mass are the expected sample mean and sample maximum. In case of the sample 

mean we find  and in case of the maximum   In each of 

these cases the threshold grows exponentially, though at different rates. In fields with rapid 

improvement of instrumentation due to the demand from the field itself, the value of is higher 

than in fields where no such improvement is possible.  

We can now define basic research production in field  at time  after the start of basic 

research in that field as the expected maximum sample value of the hypotheses in that field. As 

indicated above, we assume that the number of hypotheses that can be tested is proportional to 

the available amount of labor. In the appendix we show that if the labor force in a field grows 

exponentially, the expected sample maximum and hence the production of basic research is given 

by: 

(11)   

Here  is a constant and  is the basic research labor force in field . Equation (11) represents 

a Harrod Domar production function with two modifications. Firstly, knowledge production is 

not a linear function of labor but an iso-elastic function, the elasticity being the inverse of the 
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power of the basic knowledge distribution function. Secondly, learning is accommodated by an 

exponential growth of productivity in each field after research has started there. This basic 

knowledge production function resembles Romer’s (1990) knowledge production function. The 

two most important differences are that (11) refers to basic knowledge only, not total 

technological knowledge; and that the time variable in (11) is not the absolute time of the growth 

model but just the time since the start of research in field . And, of course, (11 is the result of a 

derivation based on explicit and fairly general assumptions about learning in basic research. 

Though in the derivation of (11) we assumed that the labor force in field grows exponentially, 

we will also use the equation in section 5 for the case where labor force growth need not be 

strictly exponential. 

 

Transitional and advanced economies 

Let  be the supply of basic research at , that is the cumulative production of basic knowledge 

pertaining to . Then the complete condition for research driven technological progress is: 

(12)   

We will assume that the actual factor productivity is the conditional expected value of the 

technology function. This condition makes it possible to distinguish two very different growth 

situations. First, suppose that the level of basic knowledge is much higher than the one 

corresponding to the actual technological level of a country. Then the basic research restriction in 

(12) is irrelevant and technological progress can be achieved by applied R and D alone. This is 

the situation in transitional economies such as China, India and Brazil at present, or Japan and 

Korea in the decades prior to 1980. Of course, in these cases, applied R and D includes the 

buying of licenses and other ways to import technology from abroad. Even so, however, a lot of 

work has to be done to master and apply technologies. Transitional economic growth is analyzed 

in section 4.  

 

Targeted and free basic research 

Next, in section 5, the situation of the advanced countries is analyzed, mainly North America, the 

European Union, Australia, New Zealand, Korea and Japan. In these countries, basic knowledge 

is not ahead of applied knowledge but basic research is needed to achieve technological progress.  
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In equation (11) the production of basic knowledge in a field depends on the labor force that is 

active in that field. We need to describe how this labor force in field is determined; perhaps 

surprisingly, this requires some further reflection on the nature of basic research. There is little 

doubt that the total basic research labor force is essentially exogenous: it depends on available 

budgets and these, in turn, depend on politically determined public funding, on the grant positions 

of universities and other research institutions and on private donations. Funding of basic research 

is mostly separate from funding of applied R and D: the latter is largely funded by the business 

sector; the part that is publicly funded is mostly in areas of government services. Thus for all 

practical purposes the funding of basic research is separated from that of applied R and D. 

Consequently, we may simply assume that the basic research budget and therefore the size of the 

total basic research work force is exogenous; we will assume that it grows exponentially and at 

the same rate as the total labor force. But this leaves open how the basic research labor force is 

allocated to fields. At first glance it seems reasonable to assume that it is allocated proportionally 

to all active basic research fields. These can be defined as the fields corresponding to technology 

points where : critical experimental mass has been achieved at time  

( but the amount of basic knowledge still falls short ). If the total 

basic research labor force is the allocation to fields must satisfy A simple 

allocation that meets this requirement is  and we will use this ‘proportional 

allocation’ as one of two models in our dynamic analysis.  

However, this allocation is likely to be too restrictive given the nature of a basic research 

‘field’ in our analysis. Remember that our fields are made up of a mixture of basic research 

disciplines as commonly understood. This means that researchers are in fact working on subjects 

that are not just relevant to one technology point, but to a range of them and often nobody knows 

where the applications will actually be. Thus, in condensed matter physics, workers are not 

looking at problems that are relevant to the industries where technological progress requires more 

basic knowledge in condensed matter physics, but on those problems where opportunities for 

progress in condensed matter physics appear greatest. Their solutions will not just help to remove 

some current barriers to technological progress in some industries, but also to help speed up 

innovation in other industries in the near future. In terms our x-fields corresponding to technology 

points, workers in all disciplines work simultaneously on all problems for a sufficient embedment 
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in experimental and observational evidence has been achieved, irrespective of the precise 

applications for which this knowledge will eventually serve. Therefore, a ‘joint production’ 

model is likely to be more realistic in our description of basic research then the proportional 

allocation model given above. The latter assumes that the work force is completely partitioned 

along the lines of the technology points, whereas a joint production model assumes that the work 

force as whole works simultaneously on all technology points. In our dynamic analysis we will 

therefore use a second model which simply says .  

The difference between the proportional allocation model and the joint production model 

is quite interesting from a science policy point of view. In innovation policy, funding instruments 

are often targeted at specific economic sectors that are deemed to be of special importance or 

promise to a country. Academic leaders, in contrast, usually argue that basic researchers are best 

left free, so that they can guide themselves towards the problems where the opportunities for 

discovery are greatest. Our model of proportional allocation can be viewed as a representation of 

targeted basic research, and the joint production model as non-targeted, or free, basic research. 

Naturally, in the joint production model, the constant term in the basic research production 

function must be reduced proportionally in order to obtain initial equal productivity of both 

models; this way, the focus of our analysis is purely on the dynamics of both models and thus on 

the different implications of targeted and free basic research for economic growth.  

 

4. Growth with pure trial and error invention. 

In this section we derive the growth path of neoclassical economy with the pure trial and error 

invention that can be associated with pre-scientific agricultural economies. We use a simple 

linear homogeneous Cobb-Douglas production function: 

(13)    ,  

Here the growth rate of variable Z is denoted by . We assume constant rates of saving for 

capital accumulation and experimentation,  and  respectively, and we assume that both 

investments and experimentation require the same mix of goods and services as total output. 

Then:  

(14)     

Labor grows at a constant natural rate  and total factor productivity is determined by (4): 

(15)    
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(16)    

Of course, if in (16) we would replace  by a constant, we would have Solow’s standard 

neoclassical model with exogenous technological progress. It is now quite straightforward to 

derive the condition for steady growth: (13), (15) and (16) yield:  

(17)   

Denoting time derivatives by dots, (12) implies 

(18)    

As and are strictly positive, they must converge to  if the latter is constant. Substituting 

this into (17) yields the steady growth rate 

(19)      

Thus the existence condition for steady growth is   or  

(20)   

Thus the power of the technology function should not be too small or, loosely formulated, 

innovation should not be too easy. If the power is too small, investments in trial and error 

generate so much technological progress and extra income that a positive feedback makes the 

growth rate explode (cf. figure1 below). Since such explosive growth has never been observed in 

pre-scientific societies, this puts a lower boundary on the power of the technology function. The 

lower boundary depends on ; if factor markets are efficient this coefficient corresponds with 

capital’s factor share and (20) requires that the power of the technology exceeds the inverse of 

labor’s share. A glance at national accounting data shows a labor share of about two-third to be 

common, indicating a lower boundary of 1.5 for the power. If (20) is satisfied, per capita income 

growth is . This is positive if the labor force grows. At low values of , if innovation is 

easy, per capita growth is highest, at higher power-values it is negligible.  

To analyze the stability of the system, substitute (17) into (18) to obtain: 

(21)   

(22)    
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The phase diagram corresponding to (22) is given in figure 1. The left hand side shows that if the 

existence condition is satisfied the system converges to the steady growth path from any initial 

situation; the right side shows explosive growth if the existence condition is violated.  

 

 

 

   

 

 

 

 

 

  

 

 

 

Figure 1: Phase diagrams for pure trial and error growth. 

 

5. Transitional growth 

In this section we derive the growth path of economies that invest in applied R&D but do not 

have to invest in basic research because the freely available level of basic knowledge is higher 

than that required at their level of technological development; in terms of condition (12): . 

Then the threshold  in equation (6) increases to  as soon as . Initially, when 

the cumulative experimental mass is small, the threshold is at the minimum  of the 

technology function. Once the experimental mass has grown sufficiently to achieve critical 

density at , the threshold starts increasing and remains equal to the critical point. Until that 

moment  and (6) is simplified to . Define

. After criticality has been achieved at , the threshold is equal to the critical 

point (  and its time derivative can be obtained directly from (7): 

(23)   

Using (5) we now obtain for the change in total factor productivity: 
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(24)    

This equation replaces equation (13) of the model of section 3. The other equations, (13)-(15), 

remain unchanged. Since   is strictly increasing (cf. 14), (24) implies  and (17) 

becomes: 

(25)  

Consequently, the equivalent of (21) is: 

(26)   

Since  is positive, the right hand part of (26) implies that  keeps on increasing as long as the 

natural rate is non-zero. The left hand implies 

(27) 
∞ ∞

 

Thus if  is smaller than the extreme right side of (27) it increases, and if it larger it also 

increases since the extreme right hand side itself increases. It is not difficult to see that  and 

also keep on increasing if the natural rate is zero. Consequently, with transitional growth, the 

growth rate of per capita income keeps on increasing and we obtain explosive economic growth. 

This corresponds quite well with the double digit growth usually seen in transitional economies. 

However, as soon as technology threshold  has increased so much that it approaches the level 

associated with the state of basic knowledge (formally: when  starts to be violated), the 

explosive growth will end and a new regime will be entered, dictated by the advance of basic 

knowledge. 

 

6. Technological progress by basic research: the steady state growth rate. 

In this section we investigate how basic research as defined in section 3 generates economic 

growth when the level of basic knowledge is the restrictive factor in technological progress. We 

first give the basic equations, then analyze the existence conditions for steady growth, then the 

stability of the steady growth rate and finally the relation between the steady state level of income 

and the propensity to spend on basic research. We analyze the steady state for both for the joint 

production and the proportional allocation models introduced in section 3, but leave the 

derivation for the proportional allocation model to the appendix. 

 



30 

 

Dynamics 

As in section 5, we can retain equations (13)-(15) but have to develop a new equation for the total 

factor productivity A. As in section 5,  is the x-value where critical mass is reached at time 

t  Critical mass is determined by (7) and can be written in growth rates as: 

(28)  

Here is the growth rate of . The growth rate of the threshold, and therefore the rate of 

technological progress, is now determined by basic research. In section 3 we already introduced 

the assumption that the total basic research work force grows exponentially at the natural rate: 

(29)  

Because criticality is reached in field at time t, this is also the time that basic research starts in 

field x. In accordance with (10) the threshold moves to x after the cumulative amount of basic 

research in this field has reached the value x. Let this be at time Then the value of  is 

determined by the basic research production function (11) and the allocation of the basic research 

work force. For the joint production model we obtain: 

(30)  

Total factor productivity then is (cf. 5): 

(31)  

In the appendix we derive a more convenient growth rate version of (30): 

(32)   

If  is the growth rate of A at , (31) and the left hand side of (30) lead to: 

(33)  

Together with equations (13)-(15) and (28), equations (33) and (33) give a complete description 

of the growth dynamics of the economy. The two new equations show that the model has a 

feature that is unusual in neoclassical growth theory: the role of time. In most growth models, the 

whole future of the system is completely determined by the current values of stocks and flows. Of 

course stocks are the cumulated results of past flows, but other than that there is no influence of 

history in the system. In our model, however, there is another role of time: there is a variable lag, 

like an incubation or gestation period, between the time that critical experimental mass is 

achieved at a technology point and the moment that this point becomes the determinant of factor 
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productivity. This means that history matters: the future depends on both the current states of the 

variables and on the historical path of the critical point. The most prominent growth models that 

shared this feature to some extent are the vintage models of the nineteen seventies which had 

some promise of providing an endogenous explanation of technological progress but have fallen 

into disuse, probably because they are cumbersome and focus too much on the embodiment of 

technological progress in capital goods.  

The length of the incubation period is endogenous. This is what makes steady growth 

possible in our model. Just as in the preceding section, the critical technology point advances ever 

more rapidly due to the growth of total factor productivity. In section 5, this ever more rapid 

advance caused an acceleration of the growth of total factor productivity and thus explosive 

growth. In the present section however, an increase in the gestation period between the moment 

that a technology point reaches criticality and the completion of basic research at that same point, 

counteracts the tendency to explosive growth, playing a role the similar to that of increasing 

product diversity in endogenous growth theories. In our case, however, the gestation period is self 

adjusting and there is no need for exogenous fine-tuning of some parameter. 

 

Steady growth with joint production 

The definition of steady growth is that (per capita) income grows at a constant rate, which we 

denote as Equation (14) implies that the growth rates of capital K and experimental mass D 

cannot be zero if income grows and (18) that they must eventually be equal to Then (13) 

implies . It is easy to see (cf. the appendix) that in the steady state the 

critical point equation (28) implies: 

(34)  

We have now found that in the steady state the growth rates of Y, K ,D, A and must all be 

constant. Of course this implies that in (33) the growth rate of A at time is equal to that at 

time t. Therefore (31) implies: 

(35)  

Clearly,  must be positive; otherwise would eventually be negative. This implies that 

implying that per capita income must grow at a strictly positive rate  In the appendix we 

combine (33) and (30) and find that for large enough t the existence of steady growth requires: 
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(36)   

From the three equations (34)-(36)  and   can be eliminated; this leads to quadratic equation 

in the growth rate of per capita income. Its solution (the negative root is ruled out because it 

violates the existence condition  ) is derived in the appendix: 

(38)  

Though this is a complicated expression some conclusions are easy to draw. Most importantly: 

there is growth even if the labor force is constant ( ), provided there is a positive rate of 

learning in basic research (  In terms of the endogenous growth literature, this means that 

size-independent growth is possible. At the other end of the scale, even without learning in basic 

research  there is still per capita growth as long as the natural rate is positive. Thus there 

are two primary sources of per capita growth: labor growth and basic research.  

Some calculations show the growth rate to be a decreasing function of the power of the 

technology and basic knowledge function. A numerical illustration is given in figure 2. The 

capital elasticity of output or non-labor factor share, is set at the 33 percent that is commonly 

derived from national accounts statistics, the natural rate is one percent and the rate of learning in 

basic research, is five percent. The figure clearly shows that a higher power law has a negative 

effect on per capita growth and a higher rate of learning a positive one. The influence of the 

learning rate is almost linear, whereas the influence of the power of the technology function itself 

resembles a power law. The figure suggests that actual per 

 

Figure 2. Impact of the technology power and basic research learning on per capita growth 

 

capita growth is the result of two conflicting forces: the degree of difficulty of technological 

progress represented by the power of the technology function and the ease of the development 
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of basic knowledge, represented by the rate of learning  in basic research. To illustrate this 

balance table 1 shows a set of combinations of  that generate the same growth rate (1.5% 

per capita), for the same values of  used in figure 2. 

 

Table 1 Combinations of  that generate 1.5 percent per capita growth 

  (%)   (%) 

1.25 0.6 4 13.0 
1.5 1.3 5 20.0 
1.75 2.1 7.5 43.3 

2 3.0 10 75.0 
2.5 5.0 12.5 115.0 
3 7.3 15 163.4 

  
 

This table shows that at a low value of the power, e.g. Lotka’s two, a rate of learning of 3% is 

sufficient to obtain 1.5% growth; but at twice this value, 13% learning is required and above 10, 

the rate of learning has to be above one hundred percent. There are some situations where very 

high rates of learning are not implausible. One is when a field depends strongly on a technology 

or methodology where rapid progress occurs; ICT, with the sixty percent growth rate of 

computing capability of Moore’s law is a case in point, but earlier examples are the inventions of 

logarithms, which greatly improved the productivity in all fields where computations were 

essential, and calculus. Even more important is the example of genomics where sequencing 

technology is improving at a rate that surpasses even Moore’s law, in part driven by the demand 

for improvement from basic research itself. In general, though, lower rates of learning seem more 

plausible which would imply lower values of  

 

Proportional allocation of the basic research labor force 

In this section we consider the situation where the basic research labor force is completely 

specific to technology points and fully fragmented into the fields corresponding to these points. 

Then we need an allocation of the total basic research labor force to the technology points. In 

section 3 we gave a simple but consistent allocation: the labor force is allocated equally to all 

technology points where critical experimental mass has been achieved but more basic knowledge 

is needed to move the threshold. In this case the derivation is more laborious and the expression 

for the growth rate more complicated, but steady growth does exist as shown in the appendix. 
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Here we do not give the solution but only consider the difference with the case of joint 

production. This is shown in table 2 for various combinations of the parameter values.  

 

Table  2 The growth rate with joint production (J) and the ratio of the growth rate with 

proportional allocation to that with joint production (P/J) 

n 1 1 1 3 n 1 1 

  33 33 66 33   33 33 

  5 10 5 5   2.5 5 

k J P/J J P/J J P/J J P/J  J P/J J P/J 

1.25 3.0 50 4.4 53 8.3 38 5.7 38 1 0.8 60 0.4 76 
1,5 2.5 56 3.6 58 6.7 44 4.8 44 2 1.0 64 0.5 79 
2 1.9 63 2.7 66 4.8 53 3.6 57 4 1.3 68 0.7 82 

2.5 1.5 69 2.1 71 3.8 60 2.9 63 5 1.5 69 0.7 82 
4 0.9 79 1.3 80 2.2 73 1.8 73 10 2.1 71 1.0 84 
5 0.7 82 1.0 84 1.7 79 1.5 78 15 2.7 72 1.3 85 

10 0.4 91 0.5 92 0.8 89 0.7 88 25 3.7 73 1.7 86 

In %, except k. 

 

The table illustrates that the growth with proportional allocation is always lower than that with 

joint production. The loss is largest at low values of k, when innovation is easiest, and becomes 

negligible at high values of k. However, at these high values of k both growth rates are relatively 

low anyway. Similarly, a high natural rate and a high factor share of capital lead to both a high 

joint production growth rate and a high loss of growth in case of proportional allocation. In 

contrast, when the rate of learning in basic research varies, though both growth rates are highest 

at high rates of learning, the relative loss by proportional allocation is strongest at low rates of 

learning. Though these results seem contradictory at first glance, they are due to the same cause. 

Both when innovation is difficult (a high k) and when the rate of learning in basic is high, the 

impact of the growth of the basic research work force on the total growth rate is small relative to 

the rate of learning in basic research. In that situation, it does not matter much that the work force 

is allocated inefficiently.   

The results with respect to proportional allocation indicate that a policy of targeting of 

basic research is not likely to be beneficial to economic growth but tends to lower it compared to 

a policy of free basic research. The loss of growth may be as much as one quarter. This 

conclusion might be reinforced if account is taken of the fact that targeted basic research is often 

targeted at sectors that are deemed to be important for society or the economy, but not at the basic 
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knowledge fields where progress is fastest. This means that targeting may well lower the 

aggregate rate of learning in basic research, further increasing the loss compared to a policy of 

free basic research. Our model indicates that the most effective growth policies are those that 

enhance the joint production character of basic research: open access of publications, data, 

software, and large research facilities; strong research institutions with intensive interaction 

between people from different disciplines; rapid dissemination of early results and reliable high 

speed communication facilities; rapid dissemination of enabling technologies; and all other 

measures that allow for rapid spread of knowledge between researchers, disciplines, and 

institutions. Of course there is nothing new about the presumption that these measures raise 

productivity in basic research, in fact is a completely traditional and orthodox position. What is 

new, however, is the conclusion that these measures may lead to a higher rate of economic 

growth and that detracting from the joint production, open character of basic research seriously 

harms economic growth in advanced countries. 

One proviso should be made with respect to this conclusion: strictly speaking our analysis 

is only valid for all advanced countries combined. In theory it is possible that individual countries 

might steal a march on the other advanced nations by targeting their basic research. To analyze 

this possibility a multi country model would be needed which analyzes both the international 

dissemination of research results and the transmission of growth through international trade.  It 

should be noted, however, that such a targeted basic research policy by individual countries is 

inherently protectionist and must be harmful to the advanced countries combined.  

  

7. Stability of  science-based growth 

In many growth models stability analysis is relatively straightforward, because the changes of the 

variables at a given time depend only on stocks and flows at same time. If at that time the stocks 

are not at their dynamic equilibrium values, flows react on the gap between current and 

equilibrium values, leading towards system equilibrium if the system is stable. In our case, 

however, the dynamics are different because of the incubation period of basic research. If the 

stocks are out of equilibrium, the flows adjust towards temporary equilibrium values, given the 

current state of technology. But this adjustment process changes the future state of technology 

(after the incubation period) and therefore the future temporary equilibrium values. In addition, 

the incubation period itself is variable. Thus there might be oscillatory or even chaotic behavior 
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in the long term even when the system would be well behaved in the shorter term. Therefore we 

cannot reduce the dynamics to a two dimensional phase diagram as in figure 1. Instead employ a 

two stage analysis. First we analyze the adjustment of the variables towards their temporary 

equilibrium values or ‘attractors’. Next we consider how these attractors move in the long term 

and approach their own equilibrium values.   

The adjustment towards the temporary equilibrium is determined by the changes in the 

growth rates of capital and the critical technology point given the current level of technological 

progress; these are given by equations (15) and (28), respectively. Substitution of (13) yields: 

(39)  

(40)  

To simplify the analysis of the incubation period and the future rate of technological progress, we 

prove in the appendix that for large t the change in the incubation period approaches 

(41)  

and that the values of exceed . Similarly, for large t the relation between the rate of 

technological progress at  and approach: 

(42)   

Differentiate (42) with respect to time, substitute (40) into the result and replace  by the inverse 

of (42) to obtain the relation between the change in the rate of technological progress at 

and the rates of technological progress and capital growth at : 

(43)   

In the appendix we show that  is positive and smaller than  that it is an increasing function 

of  with a decreasing slope and that it tends asymptotically to  at large values of  Thus a 

phase diagram at a given value of  has the general shape given in figure 3. 
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Figure 3 Phase diagram at time t for given . 
 

If the two attractors and  would be static and the system would start in either 

quadrant I or quadrant III, the system would head directly for their intersection without crossing 

either of the attractors. Thus the movement of would be monotone. Similarly, if the 

movement of  is monotone between a point in time and the time when the corresponding 

incubation period is finished, and if at the end of that period the system is in either quadrant I (in 

case of a downward moving or in quadrant III (in case of an upward movement), the 

attractors and the variables will from that time on move monotonously in the same direction and 

converge to the steady state. If, however, the system starts out in either of quadrants II or IV, the 

attractor  may be crossed and the direction of movement of changed. Since the future 

values of the attractors depend on the attractor will not merely move in monotonously but 

change direction. In principle, this might imply oscillatory or chaotic behavior in the long term. 

To ascertain that the system nevertheless converges to the steady growth rates, we analyze the 

changes in the minima and maxima of the attractors.  
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In the appendix we show that the partial derivative of  with respect to  is positive but 

that of negative; moreover,  is larger than  at the minimum and smaller at 

the maximum . In between, there is a line where both are equal. The shape of 

the line is similar to that of in figure 3 and its intersection with the attractor

is the steady state technological growth rate 

(44) ,  

where  is given by (38). The movement of the attractors at some time is determined by the 

values of  before the incubation period that ends at . These values are constrained by the 

minimum and maximum of But this means, as is clear from figure 3, that if is to the 

left of the attractor value , must increase until it is at least equal to this value; 

similarly, if is to the right of the attractor value , it must decrease until it is at 

most equal to this value. This implies that if  is below the  line corresponding to  

 must increase until is arbitrarily close to the intersection of that line with

; and when it is above the  line corresponding to  must decrease until it is 

arbitrarily close to the intersection with . However, these minimum and 

maximum values of are the values of  determining the movement of the system after 

the end of the incubation period. Consequently, after some point in time, the value of  is 

always above this minimum and below this maximum. This implies that there is a new, higher, 

minimum value for the attractor of and a new maximum value. Thus we obtain a series of 

increasing minima and a series of decreasing maxima.  This is illustrated in figure 4 for the series 

of minima, min, 1, 2, 3, and so on. Both series converge towards the intersection of  with the 

attractor of that is to the steady state growth rates of  and . Therefore the steady state is 

globally stable.  

This is an attractive property because it implies that the model and its steady state growth 

rate is an appropriate description of a wide range of situations. The lower left hand quadrant, III, 

may be thought to correspond with the gradual emergence of knowledge-led growth in the 

modern global economy, from the beginning of the seventeenth century in The Netherlands, 

diffused to England in the second half of the seventeenth century, to some other European 
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countries and North America in the nineteenth century and to many other countries in the 

twentieth century. On average, the adjustment process is a gradual increase in the rates of 

technological progress and capital growth towards long-term equilibrium values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Development of minimum and maximum rates of technological progress  

 

The upper right-hand part quadrant I can be identified with the situation after the major global 

wars, both world wars in the last century and perhaps the Napoleonic wars in the early nineteenth 

century. During these wars basic research continued, though perhaps at a lower level of 

resources. Therefore the basic research learning processes were not disrupted but the application 

of the results was, because the amount of resources devoted to applying research results in 

civilian production was minimized (in the Second World War the US even ceased producing any 

private motor cars at all, let alone incorporate innovations). Consequently, after these periods 

ended there was a huge backlog of unapplied basic knowledge and the growth rates of both 

technology and capital are likely to have ended up in quadrant I in all nations with an advanced 

knowledge base. In that case our model predicts a gradual monotone convergence from above to 

the steady state level. This fits in quite well with the post-war booms in the nineteen twenties and 
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the nineteen fifties and sixties; and with slower growth in the leading countries in the nineteen 

thirties and seventies. 

The upper left hand quadrant II may be identified with the temporary divergence from 

long term equilibrium that is generated by the rapid growth of large transitional countries such as 

China, and, more recently, India and Brazil. Following our transitional growth model, the double 

digit growth is driven by technological knowledge as well as the rapid integration of large labor 

forces into the modern global economy; it closes the gap between the level of the transitional 

countries’ total factor productivity and the productivity level consistent with the basic knowledge 

developed in the advanced countries. This phase is characterized by an average global rate of 

technological progress above the long term equilibrium; this means that the attractor of the 

growth rate of the global capital stock (in the sense of production equipment) rapid increases and 

that the actual rate of growth of capital is below it. In our model this situation causes temporary 

instability: there is downward influence on the future rate of technological progress from its ‘too 

high’ current global level and upward influence from the increase in the rate of capital. This may 

lead to some temporary oscillations until a monotone progression towards the more moderate 

steady state growth levels is once more established. 

In the same line of reasoning, the final quadrant IV may be thought to represent the 

temporary imbalance after a group of large transitional countries has come close to the total 

productivity level of the advanced countries. At that point their rate of growth of technological 

progress must decline sharply, to a fraction of its value during the transition; this depresses the 

average rate of technological progress of the global economy and subsequently may lower the 

attractor of capital growth so much that it falls below its current level. This means that 

simultaneously the future growth rate of technology increases and that of capital falls. This too 

may cause some temporary oscillations before a monotone progression towards the steady state is 

re-established.  

 

8. The rates of return on research spending 

Since steady state growth is globally stable, long term income effects of policy measures can be 

obtained by considering the steady state level of income. Consequently, we are now able to 

address what is perhaps the most important issue in science and innovation policy: the income 

effects of expenditure on capital investments, applied R&D and basic research, both absolute and 
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relative to each other. More precisely, we will analyze the effects of expenditure on these three 

categories on ‘net income’ or consumption: income after subtraction of the cost of investment 

and R and D. In our model, expenditure on capital outlays is determined by the rate of 

saving expenditure on applied R&D by We do not yet have a similar parameter for 

spending on basic research, since we have simply worked with a given basic research labor force. 

This is adequate for the analysis of growth rates, but now a more fully elaborated neoclassical 

model is needed. Redefine as the total labor force, with , where is the labor 

input in non-research production. Let be the price of labor and select units of measurement 

such that the price of output is 1. Standard neoclassical optimization leads 

to . Let the basic research budget be a fixed proportion of 

income: Then 

(45)  

Following the OECD (2002) Frascati Manual on science and technology statistics we refer to 

as (applied and basic) “research intensities”; from a strict national accounting point of 

view, these intensities should not be based on a definition of national income as output of goods 

and services but as  plus the cost of basic research; this however is of no practical importance 

since the basic research intensity is quite small. The amounts spent on capital outlays, applied 

R and D, and basic research, now are . Consumption is output Y 

less expenditure on these two categories: 

(46)    

To obtain the consumption effects of spending on capital and research we now derive (a more 

detailed derivation is given in the appendix) a set of three equations for the steady state levels of 

the key variables Y,  and  First note that in the steady state capital grows at the same rate  as 

income and (14) implies . With this equation capital can be eliminated from the 

production function (13), replacing L by  

(47)   

In the steady state, the growth rate of the critical technology point is given by (34). Substitute this 

into the original critical point equation (7) and eliminate using (8) and  using (31): 

(48)   
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In the appendix to section 7 we gave an analytic solution of the basic research equation (30), viz. 

(A.7.1). Asymptotically this equation approaches: 

(49)   

As the steady state growth rate of is constant, Moreover, (30) and 

(31) imply With (49) this yields 

(50)   

From the three equations (47), (48) and (50) we can now successively eliminate  and 

obtain a solution for Y and C. Differentiating the solution for C with respect to the rate of saving 

and the two research intensities we obtain the quasi elasticities With some arithmetic we find 

for the marginal consumption effects of expenditure on capital outlays, applied R& D and basic 

research: 

(51a)   

(51b)   

(51c)    

Note that the steady state rate of technological progress is given by (44) and depends only on 

the familiar four parameters Similarly, the ‘rates of return’ in (51) depend only on 

these four parameters and on the rate of saving and the two research intensities. The values of the 

rates of return are shown in table 3 for various values of the parameters. For the rate of saving we 

use 20%, for the applied R and D intensity 1.5% and for the basic research intensity 0.5%. These 

figures are in the range of actual OECD figures if we take into account that basic research mostly 

depends on funding by governments, private non-profit institutions and university endowments 

but that a significant part of these funds is spend on applied R and D. The table shows that at the 

assumed values of the rate of saving and research intensities the marginal returns on research 

expenditure are huge, and much larger than those on physical capital. The return on applied R&D 

is at least ten times as large as that on investment in physical capital and the return on basic 

research is at least three times as large as that on applied R&D. Spending one extra dollar on  
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Table 3 The long term marginal return (increased national consumption) on extra expenditure on physical 

capital, applied R&D and basic research; various values of the technology power and the rate of  learning 

in basic research 

Technology 
power 

Basic research 
learning rate 

Per capita 
growth 

Return on    
physical capital 

Return on 
applied R and D 

Return on 
basic research 

      

1.25 5 3.0 1.6 22 98 

2.5 5 1.5 1.3 16 66 

5 5 0.7 1.0 10 38 

10 5 0.4 0.8 6 20 

2,5 1 0.8 0.8 6 60 

2.5 5 1.5 1.3 16 66 

2,5 10 2.1 1.6 21 70 

2,5 15 2.7 1.8 24 74 

Returns: increase of consumption, in monetary units, due an increase in the expenditure category of one 
monetary unit. Natural rate one percent, capital elasticity of income one third; rate of saving 20%, applied 
R&D intensity 1.5%, basic research intensity 0.5%. 

 

Table 4. Cf. table 3, various values of the rate of saving and the research intensities 

Rate of 
saving 

Return on    
physical capital 

Applied R&D 
intensity 

Return on 
applied R and D 

Basic research 
intensity 

Return on 
basic research 

      

10 3.6 1 33 0.1 334 

15 2.1 1.5 22 0.33 101 

20 1.3 2 16 0.5 66 

25 0.8 2.5 13 0.75 44 

30 0.4 3 10 1 33 

Units of measurement and parameter values cf. table 3, unless otherwise indicated. 

 

applied research generates  5-25 dollars of extra consumption, one extra dollar of basic research 

generates 20-100 dollars extra consumption, with a central value of 65. Naturally, the values in 

this table depend sensitively on the rate of saving and the two research intensities. The huge 

marginal returns on research are caused by the low levels of the research intensities. This is 

shown in table 4. Clearly, the return is extremely sensitive to the value of the intensities, much 
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more sensitive than on the (uncertain) parameter values. For basic research this is illustrated in 

figure 5. The marginal consumption effect of increased spending on basic research is very high at 

a research intensity of a few tenths of a percent and then gradually decreases to more moderate 

levels. Still, even at two percent the marginal return of a further increase in spending on basic 

research is 20.  

 

Figure 5 Return on basic research as function of basic research intensity. 

 

The expressions in (51) imply that there are values of the rate of saving and the two research 

intensities that maximize steady state consumption. These ‘golden rule’ values are the values 

where the  are zero (in case of both have to set at zero simultaneously):  

Golden rule rate of saving:    

Golden rule applied R& D intensity   

Golden rule basic research intensity   

The golden rule rate of saving is value that is familiar from standard neoclassical growth 

theory. The golden values of the research intensities are quite high. For the central parameter set 

we used before,  the golden rule values of the two 

research intensities happen to be same: about 28.5%. These values are probably due to the lack of 

an inter-temporal preference rate that is an unavoidable implication of the use of a constant rate 

of saving and constant research intensities. It may be expected that the optimal levels of the 

intensities are lower if they are set to optimize an inter-temporal welfare function. However, at 

the values of at most a few percent presently observed in the real world, the returns on increased 

research spending are so huge that a realistic rate of inter-temporal preference should not 
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significantly offset them. It is safe to conclude that rational budgetary policies in the advanced 

OECD countries require a substantial increase in spending on basic research and, to a lesser 

extent, on applied R and D. 
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Mathematical appendix 

For every section of the main text this appendix gives the mathematical derivations, if needed.  

 

Section 2, equation 4 

The expected value of the r-th order statistic of a sample of size m from a distribution with 

cdf F(x) and pdf f(x) is (David, 1970, p. 25):  

(A.2.1)    

The sample maximum is the m-th order statistic. Therefore its expected value is: 

(A.2.2)   

For the Pareto distribution with minimum 1 this boils down to 

(A.2.3)   

Define  so that  and 

(A.2.4)    

The integral is the beta function ; consequently:  

(A.2.4)    

If the minimum is  the expectation is given by (4a). To achieve tractability in the framework 

of a growth model, we switch to a continuous sample size. Note that (A.2.1) can be written as 

(A.2.5)    

Let  be the continuous sample mass. Then the equivalent of (4.a) is 

(A.2.6)      

Note  

(A.2.7)          

Hence: 

(A.2.8)     

   =      

(A.2.9)          
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(A.2.10)  ;           

Consider . Let be the  derivative of  

Then a Taylor expansion of  around  with Lagrange’s remainder term yields

  ( ). Thus  

(A.2.11)    

(A.2.12) ;   

Section2, equation 7 

A necessary condition for the threshold to increase beyond any value of  is that critical density 

is achieved there. Before the moment  when the critical density is reached at  (that 

is ) the threshold is at . Consequently we 

obtain from the right hand part of (6) for  

(A.2.13)   

Provided  increases with time, the left hand part of (6) implies that the density increases 

monotonously at all values of  ; the right hand part implies that at any given time, the density 

decreases with , since  is a decreasing function. Consequently, at any moment there is only 

one value of  denoted by where . Suppose the threshold remains at  

until  and let  be negligible. Then the right-hand part of (6) can be written as: 

 (A.2.14)    

Insert  and differentiate with respect to time:    

(A.2.15)    

(A.2.16)     

Using (A.2.14) to eliminate the integral from (A.2.16) we obtain: 

(A.2.17)   

From this (7) is obtained by using the Pareto function (2).  

 

Section 3, equation 11 
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Let  be the expected maximum of a sample of hypotheses  in the sample mass in field . 

We omit the field subscript. The conditional distribution at time of any sample above some 

value of  is independent of the value of the threshold at the time that the original sample was 

drawn. Therefore we can apply the equivalent of (A.2.9): 

(A3.1)   

Here  and are, respectively, the cumulative sample size and threshold at time  The 

change in the sample mass is 

(A.3.2)     

Now consider the case where the labor force grows exponentially: . Then the solution 

of the differential equation (A.3.2) is: 

(A.3.3)    

Substituting this into (A.3.2) yields, for large enough : 

(A.3.4)    

Thus we can write 

(A.3.5)    

Section 6, equation 32 

First note that we can write (30) as 

(A.6.1)   

This equation can be solved analytically, but we use a different derivation that is also applicable 

in the case of proportional allocation where an analytical solution is not available. Differentiate 

(30) with respect to t using the standard formula for differentiating an integral (Courant, 1936, p. 

220) and next substitute  for the right hand side of (30): 

(A.6.2)  

 

(A.6.3)    

Substitute  to obtain (32).  

Section 6 Equation 34 
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Since the critical point equation (28) yields  

(A.6.4)   and in the steady state  

(A.6.5)   

This implies that in the steady state ∞ is given by (34).Note that this is independent of the 

assumptions about the allocation of the basic research labor force. 

Section 6, equation 36 and 37 

Differential equation (33) can be solved to obtain 

(A.6.6)   or   

Here is a value of t where the steady state exists and . Since  is constant 

we can write in the steady state. Therefore, using (35) and (A.6.6) we obtain 

from (32) for the steady state: 

(A.6.7)    

Since  is positive, the term minus one between curly brackets vanishes for large t and (A.6.7) 

implies: 

(A.6.8)   

Since the right hand side is constant, this equation can only be satisfied if the exponent in the left 

hand side is zero, implying (36). Substitution of (34) and (35) in (36) now yields a quadratic 

equation in : 

(A.6.9)   

The solution of this equation is (37). The negative root can be omitted: it leads to a negative value 

of  and is therefore, as shown above, inconsistent with steady growth. The derivatives of 

this growth rate are: 

(A.6.10)   

Section 6 Proportional allocation.  

In case of proportional allocation, (30) is replaced by 

(30b)      

Instead of (A.6.1) we obtain: 

(A.6.1a)   
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Differentiation with respect to t and substitution into the result of  for the expression equal 

to the right hand side of (A.6.1a) yields 

(32b)   

Equations (30), (33)-(35) and (A.6.4) are unchanged from joint production. In the steady state 

 As , we have  Moreover,

To obtain  define so that , 

or . Thus . The equivalent of (A.6.7) now is: 

 (A.6.7a)    

Since and are positive, the denominators of the terms of the expression between curly 

brackets approach 1 for large t and thus the expression itself approaches 

Therefore steady growth requires and the 

equivalent of (36) is 

(36a)    

Substitute (34) and (35) into (36a): 

 (A.6.9a) 

 

(38a) 

  

Section 7, equations 41 and 42 

In the case of steady growth analysis, we differentiated equation ( ; for stability analysis it 

is more convenient to solve it directly and then differentiate the solution:  

 (A.7.1)   

(A.7.2)   

Thus  

(A.7.3)  ,   (  
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Clearly, if  for all  above some value, keeps on increasing and ∞ . In that 

case we can write: 

(A.7.4)  ∞  

Using this equation and (33) the asymptotic relation (42) between and is obtained. It 

remains to prove that  is indeed satisfied above some value of t. First note that (39) implies 

(A.7.5)   if  and ∞   

Note that we use the same  as in (A.7.4). This is valid here as well as in the next few equations 

since  is just a remainder term that is arbitrarily small if t is chosen sufficiently large. Now (40) 

implies  

(A.7.6)   and  

Thus after some time, and have minimum values close to respectively. Next, 

substitute (A.7.3) in (33): 

(A.7.7)       

Note that the denominator of must be non negative, since is non-negative. This requires 

(A.7.8)    

Moreover, substituting the extreme right hand side of (A.7.7) into , we obtain after 

some reshuffling . Since  this 

implies  Consequently, from some time on, the value of satisfies (A.7.9). 

Applying reasoning similar to that in (A.7.5) we now obtain after some point in time: 

(A.7.10)  

Now (40) implies . Because we have 

. Therefore (A.7.11) implies . As 

 is arbitrarily close to zero if t is large enough, this implies that after some point in time is 

indeed strictly larger than . 

Section 7 Equation (43) and figure 3 

Differentiate (42) with respect to time: 
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 (A.7.11)   

Use (42) to write as a function of : 

(A.7.12)   (  is implied by  

Substitute this into (A.7.11): 

(A.7.13)   

This implies 

(A.7.14)  

 

In order to sketch the phase diagram in figure 3 we need to derive the properties of . First note 

that is positive for all values of Moreover, it is smaller than   

(A.7.15)   

This equation immediately implies ∞ . Next consider the partial derivative to  

(A.7.16)   

This is positive and decreases as increases. Furthermore 

(A.7.17)   

(A.7.18)   

This allows the sketch of the short term phase diagram, for given in Figure 3.  

Section 7, Figure 4 

We first give a number of properties of  as a function of  and then derive figure 4.  

 (A.7.19)   

Thus  is an increasing function of . The difference between  and is 

(A.7.20)  

The partial derivative of this function with respect to is 

(A.7.21)    

The sign of this derivative is the sign of   
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(A.7.22)  

At the minimum of this expression has the value 

(A.7.23)  

Thus is a strictly decreasing function of . The value of  is zero at  

(A.7.24)  

With respect to the sign of  we now have 

(A.7.25)  

The intersection of the numerator of  with  is 

(A.7.26)  

This is zero if 

(A.7.27)  

(A.7.28)   

In agreement with the steady state growth rate of per capita income  in (30), we find

. The value of  at the maximum of is 

(A.7.29)  

At  this becomes 

(A.7.30)  

The value of at the minimum of is 

(A.7.31)  

At  this becomes 

(A.7.32)  

The progression of minima and maxima explained in the main text is now easily derived. From 

some time  on, the lowest possible value of  is Denote this minimum as  and let the 

moment from which this minimum is first achieved The corresponding attractor of  is

. If  is at this minimum there is, irrespective of the initial value of a such that 
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for all  the value of exceeds where  can be chosen arbitrarily small 

by selecting  large enough. This implies

. Thus there is a  such that (cf. figure A2) 

 for all   

 

Continuing the same process we obtain (the ′  can be omitted because in the next step they 

become superfluous) a sequence  such that  

·  for  

·  

·  for  

Since as long as the sequence converges to

. The reasoning for the maximum values of  and is analogous, 

mutatis mutandis. 

Section 8 

The solution for Y that can be computed from (47), (48) and (50) is 

(A.8.1)   

Here    

    

    

  

The marginal consumption effect of capital outlays and the two categories of research 

expenditure can be obtained by differentiating Y with respect to the  first, next derive the quasi 

elasticities of C with respect to the which are interesting in their own right, and finally replace 

the changes in e by the appropriate expressions in .  

 

Thus the first step is to differentiate (A.8.1) with respect to  

(A.8.2)     
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Express  and  in  (use 45 in case of  

(A.8.3)  ;   

Consequently: 

(A.8.4)      

Next use (46) to obtain  

(A.8.5)    

         

The quasi elasticities in (51) are taken from (A.8.5). To obtain the marginal consumption effects 

in (51) first write the  in terms of C: 

(A.8.6)   

Differentiate: 

(A.8.7)    

A change in budget does not alter the implying 

(A.8.8)    

For equation (A.8.8) leads to: 

(A.8.9)    

Substitute this into (A.8.7) and obtain: 

(A.8.10)    

Substitute this result in the quasi elasticity with respect to  in (A.8.5) to obtain (51a). The result 

for  is symmetric. In case of (A.8.8) leads to Substitute this 

into (A.8.7) and the result in the quasi elasticity of C with respect to  in order to obtain (51c).  

 

The golden rule values for  and need to be determined simultaneously, since their values 

depend on each other. Setting both quasi-elasticities of C equal to zero we obtain two equations: 

(A.8.11)   

(A.8.12)    
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The golden rule values are easily derived by solving  and from these two equations; the 

golden rule value of  the relevant quasi elasticity equal to zero. 


